A synthetic route from D-glucose to D-myo-inositol-1,4,5-tris(dihydrogenphosphate): use of an unusual ene reaction and the Bu2SnCl2/Bu2SnH2 reagent Derrick L. J. Clive,* Xiao He, Maarten H. D. Postema, and M. Jeffrey Mashimbye Chemistry Department, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2 Received 20 March 1998; revised 7 April 1998; accepted 8 April 1998 Abstract D-Glucose was converted into the propargylsilane aldehyde 3, which underwent ring closure with retention of silicon, in the presence of camphorsulfonic acid, to give 5, and this was elaborated, via ketone 22, into 2, which had previously been transformed into D-myo-inositol-1,4,5-tris(dihydrogenphosphate). A crucial step in the synthesis is the stereoselective reduction of 22 with Bu₂SnCl₂/Bu₂SnH₂, a reagent system that shows a strong preference for generating equatorial alcohols. © 1998 Elsevier Science Ltd. All rights reserved. D-Myo-Inositol-1,4,5-tris(dihydrogenphosphate) (1) has a very prominent role in the biochemistry of calcium metabolism,¹ and the compound, as well as numerous analogs — including versions tethered² to affinity probes — has been the object of much synthetic work.¹ Other phosphorylated inositols have, likewise, been intensively studied.¹ A resolution is usually employed in the synthesis of optically pure 1,^{1,3} although there are a few reports where it has been obtained from compounds in the chiral pool, and (-)-quinic acid,⁴ D-pinnitol,⁵ and glucose^{6,7} have been used for this purpose. In the case of glucose, the carbocyclic skeleton has been generated by Ferrier⁸ rearrangement. We describe a synthesis from D-glucose of the tri-*O*-benzylinositol 2, which is convertible⁹ into 1 in two efficient steps. Our synthesis is based on an unusual ene reaction, and the use of Bu₂SnCl₂/Bu₂SnH₂¹⁰ for converting a hindered cyclohexanone into the corresponding *equatorial* alcohol. In principle, many other¹¹ inositol phosphates should be available by the present method, but we have not yet tested these possibilities. Our plan was to convert D-glucose into acetylenic aldehyde 3, in the expectation that the presence of the silyl group would facilitate a heteroatom version of the ene reaction (e.g., $3 \rightarrow 4$), with transfer of silicon from carbon to oxygen, or simply with loss of silicon.¹² In the event, neither pathway is followed; the silicon unit is retained on carbon, and is actually required.¹⁵ for efficient ring closure (which occurs in the sense $3 \rightarrow 5$). Aldehyde 3 was prepared from readily available 2-propenyl 3-O-benzyl-D-glucopyranosides (6)17 in the following way (Scheme 2). OSiMe₃ PmbO BnO BnÖ **PmbO** 4 SiMe₃ BnÖ OH **OPmb** 3 PmbO BnC SiMe₃ BnÒ 5 **Scheme 1** Pmb = p-methoxybenzyl The C(6) primary hydroxyl was protected by tritylation (TrCl, DMAP, 110 °C, 80%; $6 \rightarrow 7$), and the remaining hydroxyls were masked as p-methoxybenzyl ethers [p-MeOC₆H₄CH₂Cl (PmbCl), NaH, 91%; $7 \rightarrow 8$]. At that point, deallylation ($8 \rightarrow 9$), best done by successive treatment with t-BuOK/DMSO (100 °C) and HgCl₂/HgO/acetone/water¹⁸ (88% overall), yielded a mixture of epimeric lactols, and these were reduced (LiAlH₄, 93%) to the glucitol 10. Next, the primary hydroxyl was protected (t-BuMe₂SiCl, Et₃N, DMAP, 99%) so that the remaining secondary hydroxyl could be benzylated (NaH, BnBr, 96%) ($10 \rightarrow 11 \rightarrow 12$). Scheme 2 Reagents and conditions: i, TrCl, Pyridine, DMAP, 110 °C, 8 h, 80%; ii, NaH, PmbCl, 0 °C to room temperature, then reflux, 24 h, 91%; iii, t-BuOK, DMSO, 100 °C, 1 h; iv, HgCl₂, HgO, acetone-water, room temperature, 4 h, 88% from 8; v, LiAlH₄, THF, 0 °C to room temperature, 4 h, 93%; vi, t-BuMe₂SiCl, Et₃N, DMAP, CH₂Cl₂, room temperature, 16 h, 99%; vii, NaH, BnBr, 0 °C to room temperature, then reflux, 24 h, 96%; viii, Bu₄NF, THF, room temperature, 4 h, 92%; ix, Swern oxidation, 89%; x, Ph₃P, CBr₄, CH₂Cl₂, -20 °C, then cool to -60 °C and add Et₃N, then warm to room temperature, 83%; xi, n-BuLi, THF, -78 °C, 85%; xii, n-BuLi, THF, -78 °C, Me₃SiOSO₂CF₃, room temperature, overnight, 82%; xiii, CSA, MeOH, CH₂Cl₂, room temperature, 36 h, 94%; xiv, Swern oxidation, 92%. Removal of the silicon protecting group ($12 \rightarrow 13$, Bu₄NF, 92%) and Swern oxidation ($13 \rightarrow 14$, 89%) now set the stage for elaboration of the acetylenic unit. This was initiated ($14 \rightarrow 15$) by a standard two-step sequence: ¹⁹ conversion of the aldehyde into a 1,1-dibromoalkene (Ph₃P, CBr₄, 83%), followed by treatment with *n*-BuLi (85%). Finally, deprotonation of the resulting terminal acetylene with *n*-BuLi, and reaction with Me₃SiCH₂OSO₂CF₃, served to complete the propargyl silane unit (15 \rightarrow 16, 82%). At that point, detritylation [16 \rightarrow 17, camphorsulfonic acid (CSA), MeOH, 94%] was accomplished without affecting the silane, and Swern oxidation (92%) gave aldehyde 3. When this compound was exposed to the action of CSA in PhMe at room temperature, it was converted smoothly (91%) into 5, whose stereochemistry was assigned by comparison of its ¹H NMR spectrum with that of the fully benzylated analog (Bn instead of Pmb in 5). The latter, which was made by a similar route to that just described, is a crystalline compound whose structure was established by X-ray analysis. When the silicon group is absent (H instead of SiMe₃ in 3), little, if any cyclization occurred in the presence of CSA.²⁰ In order to convert 5 into 2, our main tasks were to invert the stereochemistry at C(3), benzylate the resulting alcohol, cleave the exocyclic double bond at C(4) to a ketone, and then reduce that ketone to an equatorial alcohol. These operations proved unexpectedly troublesome, but each step was eventually achieved by a judicious choice of reagents and the order of using them. Treatment of 5 with K_2CO_3 in MeOH-THF at reflux gave the desilylated allene 18 (86%), and this could be oxidized to the corresponding ketone 19, best using the Dess-Martin reagent (84%). Reduction (NaBH₄, CeCl₃, -78 °C to room temperature, 92%) gave the inverted alcohol 20, which was then benzylated (20 \rightarrow 21, NaH, BnBr, 87%). Ozonolytic cleavage (O₃, CH₂Cl₂-pyridine,²² -78 °C) of the allene, using a deficiency of ozone, afforded ketone 22 [81% after correction for recovered 21 (23%)]. Reduction in the appropriate stereochemical sense (to an *equatorial* alcohol) required extensive effort,²³ until the Bu₂SnCl₂/Bu₂SnH₂¹⁰ combination was tried. Under the proper conditions²⁴ (PhMe, reflux) reduction occurred in the desired manner (22 \rightarrow 23, 88%). Most reagents we tried delivered the hydride equatorially, Scheme 3 Reagents and conditions: i, K2CO3, 3:1 MeOH-THF, reflux, 4 h, 86%; ii, Dess-Martin periodinane, CH2Cl2, 30 min, 84%; iii, NaBH4, CeCl3.7H2O, 1:10 THF-MeOH, -78 °C to 0 °C, 92%; iv, NaH, BnBr, 0 °C to room temperature, then reflux, 24 h, 87%; v, O3 (<1 equiv.), 1:6 pyridine-CH2Cl2, -78 °C, 81% after correction for recovered 22 (23%); vi, 1:1 n-Bu2SnCl2/n-Bu2SnH2, PhMe, reflux, 24 h, 88%; vii, DDQ, 1:20 water-CH2Cl2, room temperature, 4 h, 70%. and the use of the Bu₂SnCl₂/Bu₂SnH₂, as well as the sensitivity of the outcome to the reaction temperature, ²⁴ is worthy of note. Finally, removal of the *p*-methoxybenzyl groups (DDQ, 70%) afforded the target compound $(23 \rightarrow 2)$.²⁵ All new compounds, were satisfactorily characterized by spectroscopic methods, including high resolution mass measurements. Acknowledgment is made to the Natural Sciences and Engineering Research Council of Canada for financial support. M.H.D.P. held NSERC and Alberta Heritage Foundation for Medical Research Scholarships, and M.J.M. thanks the Foundation for Research Development, Pretoria, South Africa for financial support, and the University of Venda for sabbatical leave. ## References and footnotes - 1 (a) Billington, D. C. The Inositol Phosphates, VCH: Weinheim, 1993. (b) Potter, V. L.; Lampe, D. Angew. Chem., Int. Ed. Engl. 1995, 34, 1933-1972. - 2 Prestwich, G. D. Acc. Chem. Res. 1996, 29, 503-513. - 3 E.g. Ley, S. V.; Parra, M.; Redgrave, A. J.; Sternfeld, F. Tetrahedron 1990, 46, 4995-5026. - 4 Falk, J. R.; Yadagiri, P. J. Org. Chem. 1989, 54, 5851-5852. - 5 Tegge, W.; Ballou, C. E. Proc. Natl. Acad. Sci. USA 1989, 86, 94-98. - 6 Sato, K.; Bokura, M.; Taniguchi, M. Bull. Chem. Soc. Jpn. 1994, 67, 1633-1640. - 7 Tethered versions of 1 have also been made from glucose: see reference 2. - 8 Ferrier, R. J.; Middleton, S. Chem. Rev. 1993, 93, 2779-2831. - Racemic series: Yu, K.-L.; Fraser-Reid, B. Tetrahedron Lett. 1988, 29, 979-982. Optically active series: Dreef, C. E.; Tuinman, R. J.; Elie, C. J. J.; van der Marel, G. A.; van Boom, J. H. Recl. Trav. Chim. Pays-Bas 1988, 107, 395-397. - (a) Martin, S. F.; Josey, J. A.; Wong, Y.-L.; Dean, D. W. J. Org. Chem. 1994, 59, 4805-4820. (b) Shibata, I.; Yoshida, T.; Kawakami, T.; Baba, A.; Matsuda, H. J. Org. Chem. 1992, 57, 4049-4051. (c) For the composition of the reagent, see: Davies, A. G.; Osei-Kissi, D. K. J. Organomet. Chem. 1994, 474, C8-C10. - 11 Cf. Chung, S.-K.; Chang, Y.-T.; Sohn, K.-H. J. Chem. Soc., Chem. Commun. 1996, 163-164. - 12 α,β-Unsaturated ketones incorporating a suitably located propargylsilane unit undergo cyclization with loss of silicon (see reference 13). For a single example of cyclization onto a carbonyl, also with loss of silicon, see reference 14. - (a) Schinzer, D.; Dettmer, G.; Ruppelt, M.; Sólyom, S.; Steffen, J. J. Org. Chem. 1988, 53, 3823-3828. (b) Schinzer, D.; Kabbara, J.; Ringe, K. Tetrahedron Lett. 1992, 33, 8017-8018. (c) Schinzer, D.; Ringe, K. Synlett 1994, 463-464. (d) Schinzer, D.; Ruppelt, M. Ber. 1991, 124, 247-248. - 14 Schinzer, D.; Panke, G. J. Org. Chem. 1996, 61, 4496-4497. - For cyclizations of allenylsilanes that occur with retention of silicon, and for which the presence of the silicon substituent is essential, see reference 16. - 16 Jin, J.; Smith, D. T.; Weinreb, S. M. J. Org. Chem. 1995, 60, 5366-5367. - 17 Three steps from D-glucose (76%): Fukase, K.; Matsumoto, T.; Ito, N.; Yoshimura, T.; Kotani, S.; Kusumoto, S. Bull. Chem. Soc. Jpn. 1992, 65, 2643-2654. - 18 Gigg, R.; Warren, C. D. J. Chem. Soc., (C) 1968, 1903-1911. - 19 Grandjean, D.; Pale, P.; Chuche, J. Tetrahedron Lett. 1994, 35, 3529-3530. - We also examined other conditions: 140 °C, p-xylene; Me₂AlCl, CH₂Cl₂, -78 °C; CF₃CO₂H, CH₂Cl₂ or CHCl₃, room temperature; camphorsulfonic acid, CH₂Cl₂ or CHCl₃, room temperature. - 22 Cf. (a) Slomp, G., Jr.; Johnson, J. L. J. Am. Chem. Soc. 1958, 80, 915-921. (b) Boddy, I. K.; Boniface, P. J.; Cambie, R. C.; Craw, P. A.; Huang, Z.-D.; Larsen, D. S.; McDonald, H.; Rutledge, P. S.; Woodgate, P. D. Aust. J. Chem. 1984, 37, 1511-1529. - Various versions of the Meerwein-Ponndorf-Verley reduction gave complex mixtures; DIBAL, DIBAL/methylaluminium bis(2,6-di-tert-butylphenoxide) [MAD], NaBH4/MAD and Bu4NBH4/MAD gave the axial alcohol. For other examples of reduction to equatorial alcohols, see Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001-7031; Corey, E. J.; Hopkins, P. B.; Kim, S.; Yoo, S.-e.; Nambiar, K. P.; Falck, J. R. J. Am. Chem. Soc. 1979, 101, 7131-7134. - Bu₂SnH₂, THF, room temperature: axial:equatorial alcohols = 2:1; Bu₂SnH₂/Bu₂SnCl₂, THF, reflux: axial:equatorial alcohols = 1:2 (80%); Bu₂SnH₂/Bu₂SnCl₂, PhMe, reflux: only equatorial alcohol. We did not try Ph₃SnH or Bu₃SnH (cf. Ziegler, F. E.; Wang, Y. J. Org. Chem. 1998, 63, 426-427, footnote 29). - Our material had: mp 122-123 °C, $[\alpha]_D = +10.3$ ° (c 1.73 in CHCl₃), [lit. (reference 26) mp 121-123 °C, $[\alpha]_D^{25} = +10$ ° (c = 1, CHCl₃); lit. (reference 27) mp 117-119 °C, $[\alpha]_D^{16} = +15.5$ ° (c 1, CHCl₃); lit. (reference 6) mp 117-119 °C, $[\alpha]_D^{24} = +12$ ° (c = 0.79, CHCl₃). - 26 Desai, T.; Gigg, J.; Gigg, R.; Payne, S. Carbohydr. Res. 1992, 225, 209-2228. - 27 Ozaki, S.; Kondo, Y.; Shiotani, N.; Ogasawara, T.; Watanabe, Y. J. Chem. Soc., Perkin Trans. 1 1992, 729-737.